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A generalized phase space method for spin operators is developed. With 
the use of a spin coherent state representation, mapping rules from spin 
operators onto a c-number space are established; simple formulas to 
calculate the mapped c-number functions are also derived. A product 
theorem, which gives a way of mapping a product of operators, is obtained 
in an intuitive form. This :can be advantageously used to transform a 
Liouville equation into a e-number equation. As an illustrative example, 
the method is applied to the Heisenberg model of a magnet. 
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1. I N T R O D U C T I O N  

There have been several at tempts to describe q u a n t u m  mechanical  systems 

in terms of c -number  functions/1,2~ In  the case of a Bose field, phase space 
methods,  (2-4~ where Bose operators are mapped  onto a c -number  space, have 

played an impor tan t  role. Mak ing  use of a quasi-probabil i ty  dis t r ibut ion 
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function mapped from a density matrix, we can construct a theoretical 
framework which is quite analogous to that of probability theory. Quantum 
mechanical and stochastic averages can thus be treated on an equal footing. 
For Bose systems, some of these mapping methods are closely related to the 
coherent state representation. (~ 

It has been recognized that similar treatments (roT) are possible also for 
spin systems. However, the existent methods are not so transparent as in the 
case of boson systems. Our aim here is to present a systematic analysis of 
the problem which, we hope, sheds a new light on the problem and paves the 
way for wider applications. For this purpose, we use a method of spin 
coherent state representation developed in a previous paper. (8~ 

In Section 2, we consider basic properties of the spin coherent state. 
The mapping rules of operators onto a c-number space are also described. 
In Section 3 we treat transformation properties of the spin coherent state 
and its relation to the Bloch state. (~176 A product theorem, by which a product 
of two operators is mapped onto a c-number space, is established in Section 4. 
By using the theorem, we give a c-number form of the Liouville equation 
(and the Heisenberg equation of motion) in Section 5, where the classical 
limit is also examined. In the same section, a simple c-number description 
of the Heisenberg magnet is obtained. In Section 6, we present some dis- 
cussions. 

2. O R D E R E D  O P E R A T O R  E X P A N S I O N  FOR SPIN 
O P E R A T O R S  

The method of mapping quantum mechanical operators onto a c- 
number space is closely related to the ordering of these noncommuting 
operators. (3,~) For the Bose operators a and a*, we have three kinds of 
ordering by expressing an arbitrary operator G in the form 

G = ~ g(m~(at)ma ~ (normal order) (1) 

G = ~ ,  g(ma~a~(at) m (anti-normal order) (2) 
m , n  

and 

G = ~ ,  g(m~((a*)ma~}w (symmetrized or Weyl order) (3) 

Then we have a corresponding c-number function F(a)(z, z*) (f2 = N, A, W) 
by replacing the ordered operators (at)ma ~, a~(a*) m, and {(a*)ma~}w by a 
monomial (z*)mz ~. 

In the following, we shall investigate a method of mapping spin opera- 
tors onto a c-number space. 
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According to Schwinger, (m spin operators {S+, S_ ,  and S~} are ex- 
pressed in terms of Bose operators {a+, a+*} and {a_, a_ t} as 

S+ = a+*a_ (4a) 

S_ = a_*a + (4b) 

and 

S~ = �89 - a_*a_) (4c) 

With the use of these relations, any operator G can be regarded as a function 
of operators {a+, a+ ~} and {a_, a_*}. 

A spin coherent state is defined as the eigenstate of the two kinds of 
Bose annihilation operators a+ and a_ : 

a+ [z) = z+ ]z) (5a) 

a_ ]z) = z_ [z) (Sb) 

where z denotes a set of two complex numbers {z+, z_}. The state ]z) can 
be expanded in terms of the angular momentum eigenstates ]Y, m) as 2 

[z) = s ~ m ~ s  ( e x p - ~ ) z J + + ~ z S - - - m  J , m ) ( 6 )  
=_ [(S + ~ (-J = m)!11/2 

where 

Izl  = lz+l 2 + Iz_l 

Our task is now to construct the mapping rules for spin operators. 
In other words, we must determine the expansion coefficients similar to 
g(,na~ appearing in (1)-(3). This is achieved by introducing a displacement 
operator D(z) defined by 

D(z) = exp(za* - z ' a )  (7) 

which generates the state [z) as 

[z) = D(z)lO) (8) 

Because of the completeness of the displacement operator D(~), an operator 
G can be expanded in the form 

f d%t . G = ~ g(Gt, a*)D(, ,)  (9) 

where g(a, ~t*) is given by 

g(=, e*) = Tr GD(-Qt) (10) 

2 The angular momentum eigenstate [aT, m) is defined as the eigenstate of number 
operators a+*a+ and a_*a_ with eigenvalues J + m and d -  m, respectively, i.e., 
[J + m, J -  m). 
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The displacement operator D(Qt) can be expanded in various forms: 

nlnz nil n2t roll m2l 
ml m2 

• (a+*) 'h(a+)%(a_*)ml(a_)m2 (normal) ( l l a )  

O(a) = exp ~ nl ! n2 ! ml v rn2 ! 
n1~2 �9 

mlm 2 

x (a+)'~2(a+*)'~l(a_)m~(a_*)ml (anti-normal) (1 lb) 

(~§ 
D0x) = ~ nl!n2!malm2! 

711 ~12 �9 

mlm2 
x (a~'~la"+~a~la*_.m2)w (symmetrized) (11c) 

where (.qtnl,.,n2,.,'tml~m2~ is given by \~+ ~+t*_ ~- JW 

~ 1  +n2+ml+m2 [ 
~(~ nl e(0~+*) n2 ~(~ ml e(~ m2 O(el) a=o 

The operator  G is, therefore, expanded as 

G = ~ ,  ,,(m ,qtnl,,,tnz,q'i'mlam2 (12a) 
~n l~2mlm2 ~ + ~ + ~-- ~_ 

in the normal  order, and 

G = ~ '  ~(A> ,,~,,*~lom~,,* m, (12b) 

in the anti-normal order, where the coefficients g are given by 

(N, m f ( [~_~l~) (a+)nl(--O~+*)n'~(a_)ml(--a_*) mz 
g-~ml  ~ = ~ g(at, a*) exp - nl ! n2 t rnl ! m2 [ 

(13a) 
and 

~,~2m1~2"(̂ ) = ~ g(0t, Qt*) exp nl  ! n2 ! m l  ! m2 ! 

(13b) 

Now we consider a complex function F(z, z*), which can be written in the 
form 

f d%t _ Qt F(z, z*) = j - -~- j (  , ~t*) exp(Qtz* - or*z) 

~ (  d~ (~ +)-~(- ~ +*)"~(~_)ml(-- ~_*)~ 
--~- f(Gt, or*) nil  n2l ml! m2! 

* /  
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By comparing (13) and (14), we can map the operator G onto the c-number 
function F~a~(z, z*), if the spectral functions g(=, =*) and f(,, ,  ~,*) are related 
each other by 

g(=, =*) = (exp �89 =*) (15a) 

for the normal ordering, and by 

g(,,, et*) = (exp -- �89 - * )  (15b) 

for the anti-normal ordering. 
In the boson case, the relations (15a) and (15b) have been generalized 

to the parametrized form 

g(c~, cz*) = [exp(�89 , ~*) 

by Cahill and Glauber, m~ while Agarwal and Wolf ~ have discussed the 
mapping in a somewhat different form, 

g(~, a*) = f~(c~, .*)f(c~, c~*) 

where f2(a, a*) is called the filter function. 
To summarize, the operator G and the c-number function F<a)(z, z*) 

are related to each other through the formulas 

G = ( d2z F ~a>(~' z*)A(~>(z - =, z* -- =+) (I6) 

and 

F(a~(z, z*) = Tr G N6)(z - % z* - =*) (17) 

where A~a~(z - a, z* - at), the mapping delta operator, is given by 

f d%t ~(ot, =*) [exp(z~t* - z*=)]D(~) (18) /va~(z - =, z* - =*) = - - ~  

The superscript on ~ specifies the anti-reciprocal mapping to ~, its filter 
function being given by 

~0x, ~*) = f~-l(_,~,  --r (19) 

For the normal and anti-normal ordering of operators, the functions 
F(a)(z, z*) are given by 

F(m(z, z*) = (z IGIz ) (20a) 

and 

1 f d2~ . F(a>(z, z*) = g5 [exp(lz[=)] ~ <-=]Gl~t ) exp([c~] =) exp(,',*z - =z*) (20b) 
, J  

respectively. 
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Here we must take into account the fact that the Bose operators 
{a~, a ,  t} appear in our problems through the form of (4). Then, fixing the 
total number of bosons is equivalent to specifying a particular irreducible 
representation of the rotation group. It is, therefore, important to consider 
the transformation properties of the spin coherent state under rotations. 

3. T R A N S F O R M A T I O N  PROPERTIES OF THE SPIN 
C O H E R E N T  STATE U N D E R  R O T A T I O N  

In order to relate the description in terms of the complex numbers z+ 
and z_ with that in the polar and azimuthal angles 0 and ~, it is essential to 
know the transformation properties of the spin coherent state. 

Any rotation of coordinate system is characterized by the successive 
Euler rotations (%/3, 7)--a rotation made about the z axis through an angle 
c~; followed by a rotation about the new, transformed y' axis through an 
angle /3, and finally a rotation about the z" axis, (z axis rotated around 
y' axis) through an angle Y. After these rotations, a state ] ) is transformed 
into a new state ] ) ' :  

]>' = R(%/3, 7)1 > (21) 
where 

R(%/3, y) = ei~S.ei~%e~S. (22) 

Since a set of operators {a+*, a_ t} forms an irreducible tensor of rank i with" 
respect to spin operators defined in (4), they transform under rotation as 

e~OS,a+te-iOS, = etOl2a+t 

e~OSza_te-iOS= = e-~O/2a_t 

e~~176 = (cos �89 -- (sin �89 (23) 

and 

e~~176 = (sin 10)a+t + (cos �89 ~ 

Due to these transformation properties, the complex numbers z transform 
as covariant components of a spinor. Thus we have 

R(~,/3, 7)lz> = I~z> (24) 

where ~ is a two by two matrix given by 

-~ eir%lZetBCrulZer 

the a, being the Pauli matrices. 
In order to relate the complex numbers z+ and z_ with the polar and 

azimuthal angles 0 and q~, we first consider a spin coherent state ]z, 0) 
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where z is a complex number. The state Iz, O) can be expanded in terms of 
the angular momentum eigenstates with the maximum eigenvalue of Sz: 

Iz, 0) = 2 (exp - �89 J )  (25) 
Y=O 

By acting with the rotation operator R(-~b, - 0 ,  - ~ )  on this state, we find 
a transformed quantization axis of spin specified by the polar and azimuthal 
angles 0 and ~. The transformed state is also a spin coherent state and is 
represented by 

Iz+, z_)  = R ( - ~ ,  - 0 ,  -~) lz ,  0) 
where 

z+ = ze -~12e  -~12 cos(0/2), z_ = z e - ~ / 2 e  i~12 sin(0/2) 

The common phase factor e -~/2 can be absorbed ino the phase of the 
complex number z, and therefore it is sufficient to only consider the operator 
R(0, - 0, -~b), which will be denoted R(~o) or R(O, ~) hereafter. 

Thus any spin coherent state ]z) is generated by acting with a suitable 
transformation operator R(O, (D) on a state [z, 0): 

l z , ,  z_  > = R(O, ~)lz, 0) (26) 

where complex numbers z+ and z_ are given by 

z+ = ze-~q~/2 cos(0/2) (27a) 

and 

z_  = ze  ~ej2 sin(0/2) (27b) 

Because R(O, (~) commutes with the total number operator n of bosons, 
(26) holds for each subspace of a fixed magnitude of the spin. Then we have 

Iz> = ~ rs; z> 
g 

]J; z) -- R(o~)[J; z, 0) (28) 

= (exp -�89 J )  

= (exp - �89 2){z2]/[(2J)!]al2}lj; w) 
and 

I J; z, 0) = (exp -Iz]  2){zZS/[(ZJ)!]lz~}lJ, J) (29) 

The state I J; ~o) is called the Bloch state: 

I]; ~,) = R(0, ~)l], ] )  (30) 

We must note that the subspace with a fixed magnitude of spin J is the com- 
ponent proportional to (exp -�89 I2} in the spin coherent state 
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[z). Completeness of the spin coherent state is represented by 

f d 2z f lzt2 d~z do' - - ~  Iz)<zl = 8~ Iz)<zl = 1 

where we have used 

with 

d~z+ d2z_ Izl ~ = d2z dr 
"1"1-2 8"11" 

doJ = sin 0 dO d~ 

By fixing the magnitude of  a spin, factoring [z) in the form of (29), and inte- 
grating over z, we obtain the completeness relation of the Bloch state C9"1~ 

f do~ ]j; o jXj ;  ~ I = (31) (23+1) 1 

where we have used the fact that [J; oJ)(J; w] has a period of 2~r instead of 
4rr with respect to 4'; we designate the unit matrix in this subspace on the 
right-hand side by 1. Using (27), e-number equivalents of operators are 
expressed in terms of  0 and 4,. For the normal association rule, it is con- 
venient to define FJN)(O, ~) from the term proportional to (exp - [z[ 2)[zl~S/(2J) ! 
in UN~(z, z*) as 

F(r~ z*) = ~ [(exp -Izl=)lzp'/(2J)!JF~N'(O, ~) (32) 
J 

which can also be expressed in the form 

Fire(O, qb) = (J ;  wlGlJ; w) (33) 

where we have used (29). For the anti-normal association rule, we define 
F~A)(O, 4~) by 

f d2z (exp - lz l2) lzp s§ 2FJa)(z, z*) (34) F~A~(O' r = (23 + 1)! 

Then we have the following theorem. 

T h e o r e m  1. The trace of two operators G1 and G2 is given by 

2 J +  if Tr G1G2 = 4rr doJ F~,)s(O, "t'~(a){O ~.,. 2 . , , ,  ~) (35) 

(See Appendix A for the proof.) 
As the operator G can be expanded in the form 

f d2z a = - ~  F?' (z ,  z*)lz)<zt 
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we obtain after integrating over z 

= ~+_.___~.2J c[ Fff"(O, $)lS; co)(J; wl do, (36) G 
4at d 

It is seen that the function F)A~(O, ~) coincides with the diagonal representa- 
tion, first introduced by Arecchi .et aL C1~ Here we have obtained a simple 
formula for this representation. Examples of the functions F}m(O, c~) and 
F}A~(O, (~) are calculated in Appendix B. 

4. P R O D U C T  T H E O R E M  

In order to obtain the phase space form of the quantum mechanical 
equation of motion, we have to know how the product of two operators is 
mapped onto a c-number space�9 For this purpose it is sufficient to consider 
the case where one of the operators is a spin operator S,,  because we can 
obtain mapping rules for the product of two arbitrary operators using the 
result of the former case�9 

As a simple generalization of the Bose case, <4~ we obtain the following 
product theorem. 

Theorem 2. Let Fl(n~(z, z*) and F2(n)(z, z*) be ~-equivalents of operators 
G1 and G2, then the (a~ �9 f~-equivalent F~2 (z, z*) of the product G1G2 is given by 

F (a>rz12 ~ , z*) = exp - ~  cqzl*Oz2 ~z~-~z*2 a 0z~*' 41 

• (37)  

For the cases of normal and anti-normal orderings, this is reduced to: 

Corollary 1. Let F(m(z, z*) and F<A~(z, z*) be c-number equivalents of an 
operator G, and let F(m(z, z*) and F(A~(z, z*) be defined by 

f(m(z, z*) = (exp -]z]2)ff(~(z, z*) 
(38) 

F(A>(z, z*) = (exp z*) 

Then c-number equivalents F(mtz12t, z*) of a product G~G2 are given by 

z* )  = = 

( 3 % )  
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and 

-12e(A~z,, z*) = F~ A~ z', - F~A~( ~, z * ) b  =~ = F2 - N ,  z'* F~)(~., z* )b .=~ ,  

(39b) 

In particular, in the case where one of the operators is a spin operator S.,  
we have 

ff(m 1( , 0 ----~8 ~ff~ N' for G I = S ~  12 = ~  z+ ~ + z _ * 0 z + , ]  

2 2i z+ 0z_* z_* N) for G1 = S~ 

1( , 8 z_ ,  zf_:~tF~N ~ for GI = S~ Fi~  ) = ~ z+ 0z+---~ - a . _  / 
(4O) 

1 ( a __8_8 ~ ~E(A , 
mA) - ~  z_ + z+ = .12 = _ ~z+ az_] 2 for G1 S~ 

1(  O 8 ~F(A ) for GI S~ ~(A) = _2] Z _  -- -- Z+ x 12 ~Z+ ~--'~_J 2 

1( O . i ~  F,(A) for G~ S~ 
,~2~(~ = -~ z+  ~z+  z _  O z _ ]  ~ = 

Mapping rules for the products GS,, (~ = x, y, z) are obtained by complex 
conjugation of the above expressions. A commutator [n, G] is mapped onto 
a c-number function, 

1(  z* 0 Z~z)F(m(z'z*) 

o r  

- ~  z ~z* - z F(A)(z, z *) 

in the phase space. Thus the condition [n, G] = 0 is equivalent to 

8 Z~z)F(~)(z, z,) = 0 (41) z ,  ~z* - 

That is, F(m(z, z*) depends on [z[ 2, 0, and r and it is independent of the phase 
of the complex variable z. 

Derivatives appearing in (40) can be rewritten using the orbital angular 
momentum operators defined by 

L+ = d~( f~ + i cot O ~ ) ,  L_ = e - ~ ( - ~  + i cot O ~ )  (42) 
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and 

L~ = - i ~/~4 

The results are given by (~3) 

( ) IA(z'z*)m~ 1 ~ i 1 i (myL~ - m~L~) + -~ 
Z_ yz+ + Z ,  y z  - = - ~  L~  - ~ 

+ g  e ~ t a n ~ + e -  ~ c o t ~  ZFz 

1 ( 0 3 )  1 i 1A(z,z.)rn~ 
2-? z _  Oz---f - z .  ~ z _  = - ~ L~ - ~ ( m ~ L .  - m~L~) + 

( 1 0 e ~ cot ~ z - z* + ~ e i~ tan ~ - Fzz 

0 ) 1 i 1 A(z, z*)m~ = ~ (mxLy - m~L~) + -~ - -  - Z _ y z  - - - ~ L ~  - 
1 ( 3  

where 

(43) 

l (z~  3) ~(z,z*)=~ ~+z*~- U 

m x =  sin 0 cos q~, mu = sin 0 sin 4, mr = cos 0 

Because we only treat those operators that commute with the total number 
operator n, the last term proportional to [z(~/~z) - z*(O/~z*)] vanishes when 
operated on F (m on F (A) due to (41). The orbital angular momentum opera- 
tors Lx, Lu, and L~ are expressed in terms of the spin in the phase space, m, as 

0 L ~ = _ i m  0 L = i (  0 0 m )  Lx = imz 8m~' ~mx" ~ my - ~ 

where m~ and my are treated as independent variables. Due to a change of 
the phase volume, we have to consider the function defined by 

f(n)(m~, my, t) = (1/m~)F(jn)(m~, my, t) (44) 

then operators L, are transformed into 

~ ( ~ ) l~ = i-~m m~, l~ = - i _ - - - , m ~  l~ = i a m - /~m~ ~ y ~ rn~ (45) 

when acting on f(a)(rn x, my, t). 
If  we concern ourselves with the subspace having a fixed magnitude 

of spin o r, the function F(m(z, z*) turns out to be an eigenfunction of A(z, z*) 
with an eigenvalue 2J. Meanwhile, in the case of F(A~(z, z*), it can be seen that 
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an operation of )~(z, z*) on F"~)(z, z*) is equivalent to the multiplication of 
FJ^)(O, ~) by - 2 ( J  + 1). This is recognized as follows. By using (34) and 
integrating by parts, whenever ;~(z, z*) appears, it can be replaced by a 
number - 2(J + 1): 

f d~'z [z[*~*2h(z, z*) Z*)ff(A)(Z, 

,f? (o +) = ~ z~+~(z*)  ~+~ z ~  + z* ;~A~(z, z*) 

= - 2 ( J  + 1) f d2z- IzI~'+2P<A~(z, z*) 
d 

It will be convenient to define the following phase space operators: 

5 r = Jm + �89 - �89 X L) (46a) 

and 
~A) = ( j  + 1)m + �89 + �89 • L) (46b) 

Now the product theorem is read in the following way: The c-number 
equivalents are given by ~n~F)~)(O, q~) for the product operator SG, and 
5P<n)*F)n)( O, 9~) for the product operator GS. By induction we are finally 
led to the following corollary. 

Corollary 2. The c-number equivalents ,r'~N~tA12jw, ~b) and ,r'~A~/A~2jW, ~) of the 
product operator GIG2 are given by 

F1 cmcA dp) = Gl(Sc~m)F~)(O, q~) = G2(StP<~>*)F~>(O, ~) (47a) 2 ~ Y ,  

and 
F1 (A)tA ~) = GI(SP(A))F~A)(O, q~) = G2(Sa(A)*)F~A)(O, q~) (47b) 2 k v ,  

where F~)(O, ~) and F~(O,  ~) are c-number equivalents of G~ and G~, 
respectively, G~(5 r and G~(5 ~n~) being operators in which spin operators 
are replaced by the phase space operator 5r '~n~ defined by (46a) and (46b). 

5. LIOUVILLE E Q U A T I O N  A N D  ITS CLASSICAL L IMIT  

In order to illustrate the usefulness of the product theorem, we shall 
consider an equation of motion of a dynamical variable or a density matrix. 
Let the Hamiltonian of the system be W; then equations of motion for an 
operator G and a density matrix p are written in the form 

= -- i[G, ~t ~] (48a) 

and 
/~ = - i[~, p] (48b) 
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These equations take the following phase space form: 

/Xa)(0, ~b) = -Lo-ce(a)F(a>(O, ~) (49a) 
and 

/5(a)(0, q~) = i~(a>P(a)(O, ~b) (49b) 

where F(a)(O, ~) and P(a)(O, (~) are c-number functions mapped from the 
operators G and p in the O-mapping rule, respectively. As a simple application 
of the results of the preceding section, the Liouville operator in (49a) and 
(49b) is given by 

~ ( o )  = ~ ( ~ o ( a ) , )  _ ~ ( ~ e ( a ) )  ( 6 0 )  

The classical limit of ~(n) is obtained by replacing b ~ with Jm -t- �89 and 
retaining only linear terms in L. 

A few examples may serve for illustration. 

5.1. A Spin Under the Influence of a Stat ic  Magnet ic  Field 
Along the z Axis 

The Hamiltonian is given by 

and the corresponding Liouville operator is written in the form 

~(':)  = - ~ o ( S ~  ">* - s~">) = ~ o L ~  = - i ~ o  a / a 4 ,  

(5,1) 

(5,2) 

5.2. Heisenberg Model  

The Hamiltonian of the system can be written in the form 

~e = -  ~ ~ , s , . s ,  (53) 
<i,j> 

Using (50), we find the Liouville equation for the anti-normal association 
rule in the form 

P(A)( O, (~) = iSe(a)P(a~(O, q~) (54) 

where 
~ ( A )  = _ ~ A , ( S e ~ A ) * . S e ~ A ) *  - ~ ( A )  ~o(A)~ 

<i,j> 

= 2 ~ ~jL,.{(J + llmj + �89 • Lj} (55) 
<i,J> 

Transformation of the variables 0 and q~ into mx and my yields an equation 
of the following form: 

f(A)(mx, rn~, t) = iL(A)f(A)(rnx, m~, t) (56) 



62 Yoshinori Takahashi and Fumiaki', Shibata 

In particular, for the classical limit, we have 

,,-,ol;r(A~ = j ~ ,  N j  ~ (rny~mJ " -  rn~mJ) + --arnyi - 

where the functionf~A~(mx, my, t) has been defined by (44). A characteristic 
curve gives immediately a classical trajectory of the form 

1VI~ = - ~  ~sMi X Mj 

where M, = Jm,. 

6. S U M M A R Y  A N D  C O N C L U S I O N  

We have established a generalized phase space method for spin systems. 
We summarize the results as follows. 

1. Mapping rules from spin operators onto a c-number space are 
obtained by generalizing those for boson operators using Schwinger's 
coupled boson representation. 

2. We obtain the normal and the anti-normal representations of the spin 
operators unambiguously, by considering the transformation properties of 
the spin coherent state. 

3. The product theorem is established. Making use of the theorem, 
we can obtain the c-number description of the Liouville equation; the classical 
limit of the spin operators is also examined. 

Thus we have found the c-number association rules in a quite general 
manner. 

Our method may have wide applicability: It is not confined to single- 
spin problems, but can be applied to many-body problems. Indeed, we have 
obtained the basic equation for the Heisenberg magnet in Section 5; using 
this equation, we can discuss spin waves, critical dynamics, and so on. These 
are left for future study. 

In forthcoming papers, the relation of the various distribution functions 
and the fluctuation phenomena in a superradiant system is investigated. 

A P P E N D I X  A. PROOF OF T H E O R E M  1 

Let F(zN)(Z, Z*) and F~A)(z, z*) be c-number functions corresponding to 
operators G1 and G2, respectively. Then the trace of the product G1G2 can 
be written in the form 

f d2z ~L~(N)( Z z*~tT(A){Z TrG1G2 = ~ 1  ~ , J 2 ~,z*) 
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If we use (32), we can extract the component of  the irreducible representation 
of rank J:  

f d2z [z[ 4"r ~(~)t'a .L'~I~'(A)( 0 (TrG:G2) ,=  - ~ ( e x p - l z l 2 ) ( - - ~ ) . t . : . , , ~ . ~ . , . 2 . j , , 6 )  

After integrating over z, we obtain Theorem 1. 

A P P E N D I X  B. S O M E  EXAMPLES OF c - N U M B E R  
F U N C T I O N S  

In this appendix we show how the spin operators are mapped onto a 
c-number space in the framework of our theory. The following examples 
may serve for illustration. 

(i) G = S~. Since the spin operator S~ is expressed in terms of Bose 
operators as 

Sz = �89 - a_*a_) = �89247247 - a_a_*) 

its c~rtumber equivalent is given by 

F<~'(z, z*) = F(A>(z, z*) = �89 12 -- Iz-I s) = �89 ~ cos 0 

Extracting the factor (exp -Izl=)lzl~/(2J)!, we obtain FJN~(O, 4) as follows: 

F(rC'(z, z*) = (exp - Iz [  2) s~ ( ~ - =  ]-)! {[zl 2 cos 0 

---Izl" -- (exp -Iz12)  7"L ~w-~-! a" cos 0 

Hence 
F~r~ o, 4) = J c o s  0 

Using (34), F~^>(O, 4) is also given by 

( (exp - l z l  2) , ,+,  I d2z 
F;'~'(O, 4) = j z ~ cos 0 

(2J) ! ~r 
- ( J +  1) cos0  

(ii) G = erS,. Using the transformation properties of the spin coherent 
states, F(N>(z, z*) and FCA>(z, z*) are given by 

F(N~(z, z*) = exp {cosh �89 + cos 0 sinh � 89  2 - Iz l~)  

and 

F(A~(z, z*) = exp {[zl 2 -- (cosh �89 - cos O sinh �89 2) 

respectively; the corresponding functions in the subspace of J, F7r c~) 
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and F(jA~(O, 4), are obtained from (32) and (34) as 

F)N~( O, 4) = (cosh �89 + cos 0 sinh �89 2s 
and 

F(jA~( O, 4) = (cosh �89 - cos 0 sinh �89 -2~s+1~ 

Other examples are shown in Table 1. 
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